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1D-Seismic Model

Dziewonski & Anderson, 1981



Making sense of mantle heterogeneities
(Seismic Tomography) 

GLAD-M25 δVS
(Lei, Tromp, et al., 2021)

S-model



Thermochemical convection
(need ρ, K, α, CP, μ, κ)

(McNamara et al., 2014)
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The Ultimate Vision                   



The Quasi-Harmonic Approximation (QHA)

• A simple approximate treatment of thermodynamical behavior

• It treats vibrations as if they did not interact

• System is equivalent to a collection of independent harmonic oscillators

• These establish the quantum mechanical energy levels of the system

• The levels are used to compute the partition function, Z, and the Helmoltz
free energy, F(T,V). From the latter, all thermodynamic functions can be 
derived.  
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Helmholtz Free Energy:
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Helmholtz Free Energy of all oscillators:
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Note:
- This (or a more complete) quantum treatment is required at “low T”

- The QHA  is not appropriate at “high T” because of phonon-phonon 
interactions      

- This (or a more complete) quantum treatment is required at “low T”

Tlow < θDebye< Thigh < Tmelt

- Phonon frequencies must be accurate (ab initio)

- Phonon sampling must be thorough



Integration (summation) over the Brillouin Zone



Earth’s Lower Mantle:

CaSiO3

+



Phonon Dispersion in MgO

LDA



Zero-Point Motion Effect:
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Phonon Dispersion in MgSiO3 perovskite:
LDA



Comparison with Experimental Data

LDA



Validity of QHA



Thermal Expansivity and the QHA



Validity of QHA



Always check if possible:



Always check if possible:



High-PT phase diagram
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Dissociation phase boundary: MgSiO3→ SiO2 + MgO?  



Dissociation phase boundary: MgSiO3→ SiO2 + MgO?  



Software for calculation of relevant properties
Systematic DFT study of structural properties of minerals with  
express: 
Q. Zhang, J. Zhuang, H. Gu, and R. Wentzcovitch, 

Material Formula Space Group

Albite NaAlSi3O8 P-1

Coesite SiO2 C2/c

Diopside CaMgSi2O6 C2/c

Bridgmanite MgSiO3 Pbnm

Stishovite SiO2 P42/mnm

Akimotoite MgSiO3 R-3

Lime CaO Fm-3m

Corundum Al2O3 R-3c



Software for calculation of relevant properties
Systematic DFT study of structural properties of minerals with  
express
Q. Zhang, J. Zhuang, H. Gu, and R. Wentzcovitch, (in prep.)
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Software for calculation of relevant properties
Systematic DFT study of structural properties of minerals with  
express: 
Q. Zhang, J. Zhuang, H. Gu, and R. Wentzcovitch, (in prep.)
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Software for calculation of relevant properties
Systematic DFT study of structural properties of minerals with  
express: 
Q. Zhang, J. Zhuang, H. Gu, and R. Wentzcovitch, (in prep.)
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How to distinguish DFT vs. anharmonic effects?

MgO

LH-DAC Shock-compression

Wu et al., J. Geophys. Res. 113, B06204 (2008)

LDA

LDA



How to distinguish DFT vs. anharmonic effects?

MgO

LH-DAC

(DFT “error” removed (Pc = 80 GPa))

Wu et al., J. Geophys. Res. 113, B06204 (2008)

LDA



How to distinguish DFT vs. anharmonic effects?

MgO

P = 0 GPa

Wu et al., J. Geophys. Res. 113, B06204 (2008)



Crystal structures at high T using the QHA

Crystal structure and phonon frequencies depend on volume only!

Therefore, if V1(P1,T1) = V2(P2,T2) = V, then → 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑎𝑛𝑑 𝑝ℎ𝑜𝑛𝑜𝑛𝑠
at (P1,T1) are the same as at (P2,T2) 



Crystal structures at high T using the QHA

Pbnm perovskite: a,b,c

a,b,c from static calculations
x 293 to 2668 K (Exp)

293 to 2000 K (Exp))
•  293 to 1004 K (Exp)

77 to 400 K (Exp)

Carrier et al., PRB 76, 064116 (2007)



Crystal structures at high T using the QHA

Pbnm perovskite: Mgy, Mgx, etc
Carrier et al., PRB 76, 064116 (2007)

Internal structural degrees of freedom

X-ray diffraction: T = 300 K



Crystal structures at high T using the QHA

Pbnm perovskite: a,b,c

a,b,c from static calculations
x 293 to 2668 K (Exp)

293 to 2000 K (Exp))
•  293 to 1004 K (Exp)

77 to 400 K (Exp)

Carrier et al., PRB 76, 064116 (2007)

Systematic deviation:
a > acalc
b < bcalc

c = ccalc



Crystal structures at high T using the QHA

Pbnm perovskite: a,b,c
Carrier et al., PRB 76, 064116 (2007)

Cause: Pth is not isotropic

δ𝜎𝑖 = PQHA(V,T) -𝜎""#$

𝜎""#$= 2%&
%'& ~)



Crystal structures at high T using the QHA

Pbnm perovskite: a,b,c
Carrier et al., PRB 76, 064116 (2007)

Cause: Pth is not isotropic

κij (P,T)= Cij
-1(P,T)

(Yes, we can calculate these!)



Crystal structures at high T using the QHA

Pbnm perovskite: a,b,c
Carrier et al., PRB 76, 064116 (2007)

Cause: Pth is not isotropic

κij (P,T)= Cij
-1(P,T)

QHA results are much improved!!

(Yes, we can calculate these!)



Multi-Configuration QHA
- So far we have used the QHA on a single structure 
- We can also use the QHA to investigate “multi-configuration” systems
- Example:  Order-disorder transition in H2O-ice    



Multi-Configuration QHA
- So far we have used the QHA on a single structure 
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- Example:  Order-disorder transition in H2O-ice    



Multi-Configuration QHA
- Example:  Order-disorder transition in H2O-ice (Umemoto et al., Chem. Phys. Lett. 499, 236-240 (2010))

- Let’s calculate the free energy of a disordered ice VII system represented by 16 molecules (supercell)
- There are 8100 possible configurations of which only 52 are symmetrically distinct    



Multi-Configuration QHA
- Free energy of an ensemble of configurations:

-(Umemoto et al., Chem. Phys. Lett. 499, 236-240 (2010))



Multi-Configuration QHA
- Order-disorder transition is more easily identified as a peak in 𝐶!

(Umemoto et al., Chem. Phys. Lett. 499, 236-240 (2010))



Multi-Configuration QHA
- Order-disorder transition in H2O and D2O



Multi-Configuration QHA
- Transition mechanism

- Distribution of energies



Multi-Configuration QHA
- Transition mechanism

- Probability of occurrence of a configuration:

P = 0 GPa T = 300 K

(Umemoto et al., Chem. Phys. Lett. 499, 236-240 (2010))



Module #2: Equations of state (EoS)

• Finite strain expansion of energy and equations of state (EOS)
• Vinet EOS
• A brief review of classical thermodynamics 
• Quasi-harmonic approximation (QHA)
• Debye model and the high temperature Mie-Debye-Gruneisen EOS (skip)
• Resources: 

- Jean-Paul Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge) 
(Chaps. 1 and 4)


