Daniil Kigelman

Faculty Advisor: Renata Wentzcovitch

My Experience with Managing Chaos in a Large Project

This summer I continued my work on the web portal of the VLab Project. The Virtual Laboratory for Earth and Planetary Materials (VLab) is a project to develop and promote the theory of planetary materials. The portal is an interface for interacting with a system (in progress) for automated creation, submission, and monitoring of large computational jobs. To date, all of code pertaining to the portal spans about 30,000
 lines. I am not sure how this figure compares with similar projects, but when the number of developers is limited, managing and adding features is a challenging task. Having recently taken a software engineering course and done independent learning about refactoring
 and Extreme Programming, I was eager to apply my new knowledge and try a process that manages uncertainty and decreases complexity. In particular, I was excited about testing—both unit testing and acceptance testing—and how it would affect my productivity.

The first step I thought should be improving the building and deployment process of the code. This is an idea borrowed from Extreme Programming Explained [1], as Kent Beck suggests that an automated build and test process (requiring no human intervention) is extremely helpful in time-critical situations (pg. 49 of Ref. [1]). With more pressure and strain, we are more susceptible to simple mistakes, and can introduce ghost errors by failing to systematically follow a complicated process. An automated build alleviates this problem by delegating the job of deploying and testing (a complicated series of steps) to a computer program. The software we are using to organize this is Maven2
: an open-source tool created to standardize the build and deployment of numerous apache projects. Guided by Better Builds with Maven [3], as well as input from Martin Lyness and Michael Neilsen about which parts of the build are particularly confusing and annoying, I worked on decreasing the complexity of configuring, compiling, and deploying the portal. Configuring the build environment is now easier, as is switching Gridsphere versions (between 2.1 and 2.2, not 3.x), and doing a full re-deployment (or first-time deployment).

task
before
after

modifying passwords and db servers
files to modify: 2

./pseudo‑potential‑repository/src/main/resources/hibernate.cfg.xml

./vlab‑base/src/main/resources/dbresource.properties
files to modify: 1
./profiles.xml

migrating gridsphere versions
files to modify: 2

./vlab-portlets/pom.xml

./input-portlet/pom.xml
files to modify: 1

./pom.xml

first-time deployment
$ mvn clean install

$ cd pseudo-webapp

$ mvn cargo:undeploy cargo:deploy

$ cd ../input-portlet

$ mvn cargo:undeploy cargo:deploy

$ cd ../vlab-portlets

$ mvn cargo:undeploy cargo:deploy

$ /your-tomcat-path/bin/shutdown.sh

$ /your-tomcat-path/bin/startup.sh
$ mvn clean install

$ cd web-deployment

$ mvn cargo:undeploy cargo:deploy

$ /your-tomcat-path/bin/shutdown.sh

$ /your-tomcat-path/bin/startup.sh

(assumptions: Tomcat server has been started and the current directory is the project directory)

The above list of steps guarantees a clean install of the portal, assuming all of the necessary software is installed—Java5, Tomcat 5.5.x, Maven, Ant, and Gridsphere. Now that I have listed the steps here, I see a lot of room for improvement. In fact, steps this long would considerably slow down my development. Though the project is described and managed in Maven2, I use Eclipse
 as my development environment. When Eclipse is properly configured for our project (which requires some work), making a change and seeing the results in the browser is as simple as saving and compiling—a much faster process than the above commands.

Besides the temporary errors introduced by a faulty build, it is also possible that while introducing a new feature or improving the structure of the current code, a programmer will break existing functionality. Unit
 and functional
 testing are one way of preventing this. When these practices are used, the resulting code is often much more stable and dependable, and bugs rarely resurface. However, writing tests to assure code correctness can often be mundane and time-consuming, so I experimented with writing tests before writing the actual code. This is called test-first development (a practice promoted by Extreme Programming), and makes testing a natural part of the process. I did not follow a strict method—sometimes I wrote code first and sometimes tests—but by the end of the internship, I found it more natural to write tests first and to explicitly define the requirements as tests. For acceptance testing, I created JWebUnit
 tests to simulate simple actions on the portal that a user may make. These were less exciting to write, but I can sleep easier knowing that several parts of the portal can be tested with one command and a cup of coffee (right now it takes about 12 minutes to run). So far both the acceptance tests and unit tests have alerted me several times that I was breaking existing functionality. Moreover, developing tests first turned out to be a new favorite practice of mine, as it physically defines and visualizes the assumptions I'm making. It also breaks down my development process to smaller, manageable steps.

The new content that I created includes two portlets—Project Status Portlet and Overview Portlet. These were designed to ease navigation in the portal. The Project Status Portlet acts as a central portlet for displaying and modifying a project, while the Overview portlet serves as a quick jump-to portlet for opening projects. It categorizes projects by their status (i.e. input not ready, ready to submit, job submitted). The original idea was to show the projects and their status (e.g. “the following two projects finished executing this weekend!”), but for now it seems useful in its current state. These two portlets surround any portlet with actual content (e.g. the input-generating portlet) so that a user can always check which project is open, as well as change the current project with a few clicks.

The work that I did this summer seems to be both an educational and a productive experience. I learned a lot about making my code more readable, improving my design through well known design patterns, refactoring by making small isolated steps, and writing dependable code by creating and frequently executing automated tests. The practice I've had with these and other Extreme Programming principles has allowed my programming to be less chaotic and increasingly fun. I hope my contribution to the project has been as valuable as the experience has been to me.

Referenced Works:

[1] Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wesley. Second Edition 2005 with Cynthia Andres.

[2] Fowler, Martin. Refactoring: improving the design of existing code. Addison-Wesley, 1999

[3] Massol, van Zyl, Porter, Casey, Sanchez. Better Builds with Maven. DevZuz. 2007. http://www.devzuz.com/web/guest/products/resources#BBWM
�	Lines counted in � HYPERLINK "https://vlab.svn.sourceforge.net/svnroot/vlab/branches/demo_with_maven2"��https://vlab.svn.sourceforge.net/svnroot/vlab/branches/demo_with_maven2��find . -regex '.*\.\(java\|pom\|jsp\|html\|xml\)' -print0 | xargs -0 cat | wc -l�(suggested by � HYPERLINK "http://en.wikipedia.org/wiki/Source_lines_of_code" \l "Free"��http://en.wikipedia.org/wiki/Source_lines_of_code#Free�)

�	Refactoring: cleaning and restructuring code to make it easier to work with.

�	Maven: a software project management and comprehension tool. It can be used to manage a project's build, reporting and documentation from a central piece of information.		(http://maven.apache.org)

�	Eclipse: a free, open-source integrated development environment.	(http://www.eclipse.org)

�	Unit test: code that tests a small unit of code, usually a class.

�	Functional test / acceptance test: generally a black-box test, written to ensure end-product functionality.

�	JWebUnit: an open source testing framework designed to make website testing easier.

