Intern Name: 

Richard Perkins

Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803

Faculty Advisor (project supervisor): 

Dr. Bijaya B. Karki, Louisiana State University

Dr. Renata Wentcovitch, University of Minnesota

Project Title:  

Further Development on Elasticity Visualization System
Major research activity


I have been working from Louisiana State University under the supervision of Dr. Karki, on ElasVis, the elasticity visualization project.  ElasVis is an interactive elasticity visualization program.  It visualizes multivariate elastic moduli (elastic constant tensors) and wave velocity-direction data of minerals as a function of pressure, temperature and composition.  ElasVis supports four different types of visualizations: star plot, parallel coordinate, scatter plot, and polygon-based surface rendering (see figure for global mode visualization).  The star plot and parallel coordinate are used to directly represent the elastic constant tensors, the scatter plot is used to plot the anisotropy factors of the different wave propagation, and ElasVis uses a polygon-based surface rendering technique to graphically represent the wave velocity-direction data.

[image: image1.jpg]&

R

T

Color: [ T [ ] | Thick: i

® single O Multiple

R10-(MgO)-T0-P150.0050

imber of Fows
i

caa

i
gt

12

Star Plots

3

Longitudinal Wave

. 1600€11 caa
s L 1200
2 &0
[ a0
o
B s B (poler)
Anisotropy Factars Parallel Coordinates
Shear Wave 1 Shear Wave 2

ciz

Datasets

Datasets(DoubleClick)
¢ Client Datasets
% Cubic
o anotherEvanTest673
o CifFastTest-308
¢ PedroTest455-308
RI1-(g0)-TO-P-5,
R2-(gO)-T0-P-3
R3-(MgO)-TO-PO.0
Ri-(gO)-T0-P2.0
RE-(MgO)-T0-P5.0
RE-(g0)-TO-P10.
R7-(ig0)-T0-P20,
RE-(gO)-T0-P40,
RE-(lgO)-T0-P2g,
R10-(Mg0)-T0-P14

< I
Velocity Distribution
View

® 3d Velocity (O XY plane
O ¥Ipane O DXplane

Frame
® soid © wie

Shading

® Enable
© Disable
© sealed

[INeed Ais  Degree:

s Length:





I have been updating and adding features to the visualization program to make it more user friendly and more interactive.  The first feature I added gave the program the ability to deselect data from the display screen.  At first when you displayed some data you could not remove it from the screen without clearing the whole screen. So my task was to make it possible, by selecting a node from the tree that displays the datasets from the database, to show or remove that nodes data from the visualization screen.  I first had to make the program check if the node selected was already being visualized, and if it was remove it from the screen.  To do this I used a MouseListener instead of a treeSelectionListener, which recognizes every time the mouse is clicked and then relays what node was clicked to the part of the program that decides to display of remove that nodes data from the screen.  Once the program could select and deselect data it was time to make this feature practical.  When a node was selected it would either add or remove the data from the visualization screen, but the tree remained the same.  I decided to change the color of the nodes that were being visualized so the user would know exactly what data was being displayed.  We used a default TreeCellRenderer to display the dataset tree, but it only is called each time a different node is selected.  So I had to manually call it from the mouseListener when a node was clicked more than once.  It now change the color of the node whenever it was clicked, but it did not repaint the tree, because when a node is clicked the tree the renderer calls the function getTreeCellRendererComponent for each node that is currently being displayed, which figures out what color each node is supposed to be, and then repaints the tree.  The problem with calling this function from the MouseListener manually was, even though it would change the color of the node, it would not repaint the nodes until it was done automatically by the renderer.  I tried calling repaint, but it only tells the renderer that the tree needs to be painted so it takes too long before the tree is actually gets repainted.  So I decided not to manually call the paint but to trick the program into automatically calling it.  I used the fact that every time something happens to the tree it is redisplayed, so I expanded and collapsed, or vice-versa, one of the current nodes siblings to make the program repaint the tree.


I also added new interactive features.  I started by adding features to the star plot.  First I made it possible to select different axes by calculating the angle at the point the mouse was clicked and comparing it to the angle of each axis.  The closest axis was then selected and repainted to be green.  Now that I could select the axes I implemented other features such as: changing the length of the selected axis to make it easier to see individual data when it was crowded in one place, removing axes so it is possible to see only the desired elastic constant, and changing the angles of the axes so it is possible to compare the elastic constants in close proximity.  Once you select the axis with the mouse the other features can either be activated by the use of the keyboard or mouse.


While adding more features at the user interface level, I have also added more features at the data input level.  The program can now recognize ten crystal types: cubic, hexagonal, tetragonal (classes 4, [image: image2.png]


, 4/m), tetragonal (classes 4mm, [image: image3.png]


2m, 422, 4/mmm), trigonal (classes 3, [image: image4.png]


), trigonal (classes 32, [image: image5.png]


m, 3m), orthorhombic, monoclinic (Diad || x3 standard orientation), monoclinic (Diad || x2), and triclinic.  I’ve also expanded the database to include at least one crystal of each type.

Research findings


We have expanded ElasVis to recognize all types of crystal systems and also added the elasticity data that are representative of these systems to the database. This will allow us to visualize the elastic properties of different crystals available from the expanded database. Our future plan is to make ElasVis fully operational for remote visualization and expand the database.

Research training


I have had to research many different fields of science to work with this project.  I learned about elasticity – an important topic in material physics with substantial geophysical implications.  I have learned about the elastic constants, wave propagation based on the Christoffel equation, anisotropy.


Besides being familiar with the main scientific motivation behind ElasVis, I have also developed a lot of experience in the graphics programming using JAVA and JOGL - the Java binding of OpenGL.  I have also learned a lot about java.swing components including but not limited to: displaying and manipulating trees through the use of tools such as MouseListener, KeyListerner, and DefaultTreeCellRenderer, using the mouse’s getX and getY to calculate the angle and associating these with the way GLCanvas plots points.


Through this project, I have become exposed to the field of scientific visualization – an emerging field in computer science with a multidisciplinary impact. The goal of a scientific visualization is to analyze data by representing the data through pictures, which makes this data easier to understand from a human viewpoint. I have also been familiar with various techniques used in visualization including parallel coordinates, star plot and polygon surface rendering. 

Publications

Ravi Ananthuni, Bijaya Karki, Evan Bollig, Cesar da Silva, Gordon Erlebacher: A Web-Based Visualization and Reposition Scheme for Scientific Data. MSV 2006: 311-317.

