Javier Roman Sanchez

Faculty Advisor: Renata Wentzcovitch

Making VLAB Secure

Choosing a web services security solution can be intimidating, because there are dozens of solutions available, and many factors to determine. Although there are three key points you want to have in mind to achieve web services security: authentication, integrity, and confidentiality. First, authentication means that a message being delivered to a recipient prove that the message is in fact from the sender that it claims to be, verifying the identity of a user. The Second point, integrity ensures that a message has not been altered since its departure from the original sender and third confidentiality, that is concert with protecting the privacy of the message contents. These three points can be accomplished with OASIS Web Services Security (WS-Security). WS-Security is a communications protocol providing a means for applying security to Web Services and on April 19 2004 the WS-Security 1.0 standard was released by Oasis-Open.

A possible approach would be using SSL to secure the transport channel. It is a very common approach for web services security it is usually called Transport Level Security. This is a natural extension of web application security, where the HTTPS protocol secures HTTP requests/responses using SSL. SOAP/HTTPS is the web services equivalent of HTTPS. It guarantees that calls are secured for both confidentiality and integrity. Implementing SOAP/HTTPS security is relatively simple since most application servers simply extend the SSL certificate configuration for HTTPS. Although this solution may seem great it has several disadvantages: 1) SOAP/HTTPS does not address authentication requirements. It must be combined with other mechanisms such as UsernameToken to handle authentication. 2) Because SSL encrypts the entire channel, it carries a significant performance impact. 3) SSL is a point-to-point security scheme that is not suitable for end-to-end topologies where messages flow across intermediaries such as gateways.

The other approach is using Message Level Security where security constraints are applied to the message itself instead of the transport channel. The web services security standards that have been specified in recent years have revolved around the application of MLS because of his its feature-rich goodness. One thing we want to have in mind is that grid computing is all about decoupling and interoperability, so this approach offer it all. Because with this approach you can use best transport protocol for you or you can uses all of them. You can set one type of security for the request side and have another type in the response side. Basically you can apply different types of security methods on the same web service, so you can take advantage of every individual case. To implement WS-Security on AXIS, a framework for developing web services, we need to use Apache WSS4J that is primarily a Java library that can be used to sign and verify SOAP Messages with WS-Security information.

Once chosen the tool we are going to use to secure VLAB, we can start creating the security. For the case of authentication we use UsernameToken where you passed username and password in the header of the SOAP message. When the other side receives this information it can check in the database if it is correct. But this method has a disadvantage everybody can see this information in the SOAP message. However this method has and option called password type, where instead of the plain text password you can digest this password. This property is called message digest, that is, concatenate the nonce, creation timestamp, and the password, digest the combination using the SHA-1 (Secure hash algorithm), then include the Base64 encoding of that result as the Password. This helps obscure the password and offers a basis for preventing replay attacks.

Still somebody can calculate that information, managed to find the password and try it to use it. However there is another method to secure that information and the other information as well: it is called encryption. Combining these two methods UsernameToken and Encrypt accomplish two key points, confidentiality and authentication. The way encryption work in WS-Security is a two-phase process using both symmetric and asymmetric algorithms that involves using a shared key to encrypt/decrypt the message data using a symmetric algorithm such as Triple-DES (Data Encryption Standard). Symmetric algorithms are very efficient and work with a single key for both encryption and decryption calculations. WS-Security implementations use a key that is randomly generated. Passing the shared key in the SOAP message with the key encrypted/decrypted using an asymmetric algorithm such as RSA (Rivest-Shamir-Adelman). The shared key is encrypted with an asymmetric algorithm that utilizes a pair of keys - private and public. An X.509 certificate has one key that is private to the owner of the certificate and a second key that is shared with others.

The symmetric algorithm we are using is the Rijndael and was chosen in October 2000 by the National Institute of Standards and Technology to be the U.S.'s new Advanced Encryption Standard. Rijndael is an extraordinarily fast and compact cipher that can use keys that are 128, 192, or 256 bits long. A Special-purpose quantum computer in the year 2015 will take 108 million years to break a key of 128 bits, that is an example of how secure this symmetric algorithm is.

We have one key point left that we have to solve: integrity. A digital signature will solve this problem; it enables the recipient of a message to determine if it was altered in transit. The WS-Security specification builds on the XML Signature specification to implement signatures. The way we are going to do signature is using UsernameTokenSignature, where WS-Security takes the username and password to create a key and use that key to sign the body of the SOAP message. This way you are sure that nobody tampered with the SOAP body or element you defined.

To achieve all this I created two web services that can communicate with each other back and forward. Then I applied authentication between the two web services just the way I explain above. Next I added encryption to the Soap body and to the element UsernameToken in the request and response message. After that I used UsernameTokenSignature instead of just UsernameToken to add digital signature to the Soap message. My next step was verified that all the messages between the two web services have all the security measures that I applied using SOAPMonitor. SOAPMonitor is tool of AXIS that allows for the monitoring of SOAP requests and responses of your web service via a web browser.

Accomplishing these three key points in the VLAB project make it totally secure for the user and services, but it wasn't an easy job. I had to go through a lot of reading and searching because web services security has changed a lot these past 4 years. There is not much documentation about this kind of security because it is kind of new, but is enough to get the job done.

