The implications of regional microseismic activities: A lesson from 2008 Ms. 8.0 Wenchuan earthquake

Huai Zhang a,⁎, Huihong Cheng b,⁎, Yimin Jin a, Gang Luo a,⁎, Jingjing Wang a, David A. Yuen b, Yaolin Shi a

a Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049, China
b Newton Horace Winchell School of Earth Sciences, University of Minnesota, 310 Pillsbury Drive SE, Minneapolis, MN 55455-0231, USA

⁎ Corresponding authors.
E-mail address: hzhang@ucas.ac.cn (H. Zhang).

Article history:
Received 2016
Received in revised form 2016
Accepted 2016
Available online 2016

Keywords:
The Ms 8.0 Wenchuan earthquake
Seismicity intensity analysis
Coulomb stress change

1. Introduction

On 12 May 2008, the great devastating Ms. 8.0 Wenchuan earthquake struck the eastern margin of Tibetan Plateau and significantly redistributed the regional stress in Longmenshan fault zone (LFZ) and its neighboring regions (Parsons et al., 2008; Toda et al., 2008). Previous studies calculated the coseismic Coulomb stress change induced by this catastrophic event and discussed the subsequent effects following this event on the seismicity along LFZ and its neighboring fault zones (Liu et al., 2014; Luo and Liu, 2010; Parsons et al., 2008; Toda et al., 2008; Wan et al., 2009). These studies used either analytical elastic dislocation model, or more complex 2-D and 3-D numerical models (Shan et al., 2009; Wan and Shen, 2010; Wu et al., 2013) to calculate Coulomb stress change, and proposed hastening or retarding of the nucleation of earthquakes on its neighboring fault zones. They are mainly based on simplified geological modeling and assumptions of parameters of heterogeneous material, fault geometry, coseismic fault slip and fault rupture mechanism. Therefore, different works may bring model variance and hence big difference, and may introduce unacceptable artificial uncertainties to seismic hazard analysis and mitigation after this huge and complex event.

Coulomb failure stress has been demonstrated to be an efficient tool to analyze the aftershock nucleation (Geller, 1997; Stein et al., 1992). Due to insufficient constraints and lack of reliable measurements during geological survey, the full tectonic stress field of the crust still cannot be determined in advance to date. Thus, these models mentioned above can only adopt the Coulomb failure stress change (ΔCFS) to quantitatively evaluate the influence of the major event on the post-seismic nucleation and its triggering mechanism. According to the Mohr–Coulomb theory and the Hook-Brown strength criteria (Gahalaut and Hassoup, 2012; King et al., 1994; Stein et al., 1992), ΔCFS on the existing fault plane is

\[
\Delta CFS = \Delta \tau + \mu (\Delta \sigma_n + \Delta p) + \Delta \mu (\sigma_n + p),
\]

where \(\Delta \sigma_n\) is normal stress change on the fault plane, \(\Delta \tau\) is shear stress change in slip direction on the fault plane, \(\mu\) is friction
is positive, but the fault becomes more stable if the disturbance may induce failure of the seismogenic fault. We then calculate \(\Delta CFS \) to determine if a synthetic epicenter or the existing fault is more dangerous or safer. Or the fault is prone to slip if \(\Delta CFS \) is positive, but the fault becomes more stable if \(\Delta CFS \) is negative.

The problem is, however, the in-situ values of these critical parameters in Eq. (1) cannot be determined accurately. For example, the \(\Delta \mu \) in the third term of the right-hand side is too difficult to be analyzed during the fault-slip procedure based on the existing effective constraints and experimental conditions. Moreover, since the total background stress state is unknown, as essentially required by the Coulomb-Mohr failure criterion (Byerlee, 1969), this methodology cannot be considered as a reliable criterion for fault slip judgment eventually (Kagan et al., 2012; Stein et al., 2012, 2013).

Then, one realistic question arises up: Can we practically figure out reliable constrains to trace the stress migration and predict major seismic activities following large earthquake event? Large earthquake may lead to regional seismicity change greatly (Toda et al., 2012). Post-seismic change of seismicity following the major event is a direct and visible indicator of regional stress migration which can directly reflect the aftershock nucleation or triggering of the future events (Brodsky and Lay, 2014; Gahalaut and Hassoup, 2012; King et al., 1994; Stein et al., 1992). With the help of broadband seismicity observations and statistical methods in recent decades, studies in statistical seismology have been making considerable progress. It provides alternative insights into the mechanism of regional stress migration and aftershock nucleation in the crust at depth. Statistical methods based on hypothesis tests, such as Z-test (Habermann, 1981, 1983a), \(\beta \)-test (Wyss and Habermann, 1988), P-test and \(\gamma \)-test methods (Marsan and Nalbant, 2005b), have been introduced to measure the significance of seismicity rate changes before and after big earthquakes.

After the great Ms. 8.0 Wenchuan earthquake, the local seismicity pattern underwent significant change along the seismogenic LFZ and its neighboring regions. Both the number and their frequency of regional seismic events have sharply increased in some regions, but also have dropped in some other regions. In this study, we adopt the well accepted Z-test statistical method to analyze the earthquake catalogue before and after the Wenchuan earthquake to examine the Wenchuan earthquake-induced seismicity rate change in LFZ and its neighboring fault zones, and compare our results with the calculation results of Coulomb stress change in previous studies. We have two primary objectives. The first one is to compare and validate coseismic Coulomb stress change pattern induced by the 2008 great Wenchuan earthquake with seismicity rate change pattern before and after this event in these fault zones. The second one is to figure out to what extend are these seismicity rate changes correlated to the 2008 great Wenchuan earthquake. To achieve these goals, we analyze Z-test value as a function of time and seismic magnitude in different spatial-temporal windows.

2. Method and data
2.1. Z-test method

In recent years, many statistical methods for estimating seismicity rate change and significance level have been developed. Marsan and Nalbant (2005a) introduced the \(P \) value and \(\gamma \) value statistical methods, which suggest that the earthquake frequency change passes the 95% confidence interval of hypothesis test when \(|\gamma| = 1.6 \) (Marsan and Nalbant, 2005a). Matthews and Reasenberg (1988) proposed the \(\beta \)-value statistics, obeying the Gaussian distribution with mean value of 0 and standard deviation of 1. But it is inconvenient to be utilized as the significance level of seismicity frequency change cannot be directly given by the threshold of \(\beta \) interval. For each significance level, the Z-test has a single critical value which makes it more convenient if the sample size is large or the population variance is known. Therefore, the Z-test statistical method proposed by Habermann in statistical seismology has been widely applied, which can assess the significance of deviations from a stationary Poisson process in specific temporal and spatial windows (Habermann, 1983b; Sarah et al., 2016). \(|z| = 1.96 \) indicates that the earthquake frequency change passes the 95% confidence interval of hypothesis test which is similar to the \(\beta \)-test statistical method (Habermann, 1981, 1983).

Therefore, in this study, we adopt the Z-test statistics to detect the notable change of the seismic activity in a regional scale. Basically, this method is based on the central limit theorem, is applied to compare the differences between the average values of two independent samples from the same sequence (Habermann, 1987; Meyer, 1975a). This theorem can be briefly described as: given the arithmetic mean of a sufficiently large number of iterates of independent random variables, each with a well-defined expected value and well-defined variance, will be approximately normally distributed (Lawley, 1938). It is capable of conveniently abstracting the complicated data sets from regional seismicity sequence by different time and space windows, and identifying their significance with strict statistics (Toda et al., 1988; Wyss and Habermann, 1988). Under the null hypothesis, the Z value is defined as

\[
z = \frac{\mu_1 - \mu_2}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}
\]

(2)

where \(n_1 \) and \(n_2 \) are numbers of the events of two sets of earthquake clusters with \(\mu_1 \) and \(\mu_2 \) as their mean values, which are normally distributed by central limit theorem, and their standard deviations are \(\sigma_1 \) and \(\sigma_2 \), respectively. The 90%, 95% and 99% significance levels correspond to \(z \) values of 1.64, 1.96 and 2.57 (Habermann, 1981, 1987; Meyer, 1975b; Wyss and Habermann, 1988).

2.2. Earthquake clustering

We download and utilize microseismic catalogue data in Chuanbian region (27–35°N, 99–106°E) from China Earthquake Networks Center affiliated to Chinese Earthquake Administration (http://www.csndmc.ac.cn/wdc4seis@bj/). We then extract seismic data of \(\sim 5 \) years before and after the 2008 Ms. 8.0 Wenchuan earthquake respectively to analyze regional seismicity rate changes after this big event. We elaborately select the time window as January 1, 2003 to April 20, 2013, right before the Ms 7.0 Lushan earthquake occurred, as Lushan earthquake is considered to be heavily impacted by the 2008 Wenchuan earthquake. Therefore, during this nearly ten-year time window, no event greater than Ms. 6.0 main shock has occurred in our study regions. To avoid observation data uncertainties and to guarantee that the statistical results are physically correlated to the regional stress migration before and after the Wenchuan earthquake, we first partition LFZ and its neighboring fault regions with different schemes, and we select the most reasonable spatial clustering according to the geological settings, most importantly, fault systems, as well as spatial epicenter distribution pattern of earthquake catalogue in the study region. The partitioned fault zones and their correspondent earthquake clusters in our study region are shown in Fig. 1. Note that we uniformly apply local magnitude \(M_L \) for data consistency.
Broadband seismic stations and technology improvement, analysis will be affected eventually. Due to the increasing of quake catalogue data will be insufficient to meet the minimum omission. Or more importantly, the total number of earth-the completeness may, however, bring about important information embrace irrelevant information and deliver non-objective or even complex task during data processing. Underestimation of Mc may the completeness of earthquake catalogue is an essential and comprehensive task during data processing. Underestimation of Mc may be neglected. For simplicity to discuss, based on this result, we shows that they vary at a range of 1.42–2.31 (Fig. 2a), suggesting Mc is a function of time, usually decreases with respect to time. Moreover, because that the layout of the seismic stations is not spatially evenly distributed, Mc value is uneven in the space subsequently, or namely varies with space. Subsequently, analyzing the temporal-spatial distribution of Mc in various spatial and temporal scales is significant for most seismicity study.

Given a specific set of earthquake catalogue data, a variety of methods have been proposed for calculating Mc, for examples, the Entire-Magnitude-Range(EMR) method (Woessner and Wiemer, 2005), the Maximum Curvature method (Wiemer and Wyss, 2000), Goodness-of-fit test (GFT) method (Wiemer and Wyss, 2000), the Median-based analysis of the segment slope (MBASS) method (Amorèse, 2007), and Mc by b-value stability (MBS) method (Cao and Gao, 2002; Yi-Lei et al., 2016). Basically, these methods can be classified into two types: the waveform-based method and statistical method. The waveform-based method, for examples, comparison of amplitude-distance curves, signal-to-noise ratio and amplitude threshold method(Gomberg, 1991; Sereno and Bratt, 1989), requires huge amount of work on wave form analysis which are time-consuming and is not ideal for realistic application.

The statistical method analyze the relationship between magnitude and frequency. One of the most frequently employed ones is based on the assumption that the Gutenberg-Richter (G-R) power law distribution is suitable to the occurrence frequency of earthquake magnitudes no less than Mc, as:

\[\log N(M) = a - bM \]

(3)

where N is the number of total events equal or above magnitude M, and a and b are constants of G-R criterion. G-R power law, dominated by statistical method and as one of the basic statistical law, is a universal empirical formula in seismology. The parameters in G-R power law have rich and concrete physics origins. Meanwhile, the calculation method is simple. Therefore, mapping the minimum magnitude of completeness in earthquake catalogues based on the G-R power law is the most widely used and efficient method for seismicity analysis (Gutenberg and Richter, 1944; Kafka, 2000; Wiemer and Wyss, 2000; Woessner and Wiemer, 2005).

The Sichuan-Yunnan region exhibits strong and high frequent seismicity owing to its complex geological settings and active fault systems. However, the estimated results of Mc will be different with the different assumptions. Each method has its own benefits and drawbacks. In order to overcome the uncertainty of using different data with the same method, this study employs the Entire Magnitude Range method (EMR) to analysis the variations of regional seismic completeness values.

For spatial distribution of Mc, EMR supposes that the frequency-magnitude distribution conforms to G-R criterion for all events above seismic magnitude of Mc, and conforms to normal distribution for events under seismic magnitude of Mc. So Mc is defined as the critical point where the G-R power law begins to meet when Eq. (3) is calculated (Woessner and Wiemer, 2005).

In order to demonstrate spatial distribution of Mc value, we install a background grid with node space of 0.1° over our study region. For each node, we scan earthquake catalogue data in a radius of 50 km to calculate Mc. To guarantee the reliability statistically, we get rid of the values on nodes whose number of valid data are less than 100. Spatial distribution of Mc values clearly shows that they vary at a range of 1.42–2.31 (Fig. 2a), suggesting that regional difference of Mc values among these regions cannot be neglected. For simplicity to discuss, based on this result, we divide our whole study area into four regions A, B, C and D (Fig. 2a). We calculate changes of Mc values with respect to time in each region. The Mc value experiences a significant change from May, 2008 to January, 2010 in region A (red curve in Fig. 2b), showing the significant effects of the 2008 great Wenchuan earthquake.

![Fig. 1. Earthquake clustering according to fault zones in our study region. The background colors show topography and the red solid curves show faults in this region. The red and blue spots represent epicenters of seismic events ~5 years before and ~5 years after Wenchuan earthquake, respectively. The two focal mechanism beach ball diagrams represent the epicenters of the 2008 Ms. 8.0 Wenchuan earthquake and the 2013 Ms. 7.1 Lushan earthquake, respectively. F1: eastern Kunlunshan fault zone; F2: Minjiang fault zone; F3: Huayingshan fault zone; F4: Wubianhe fault zone; F5: Longmenshan fault zone; F6: Longquanshan fault zone; F7: Mabian-Zhuotong fault zone; F8: Huayingshan fault zone; F9: Zemuhe fault zone; F10: Xianshuhe fault zone; F11: Anwuhe fault zone; F12: Sanyanlong fault zone. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)](image)
along on LFZ and its adjacent regions. In order to determine the average value of Mc values in each region, we neglect Mc values of region A from May, 2008 to January, 2010, because the performance of seismic activity does not significantly change before and after this period. Finally, the average value of Mc in these four regions is 1.5, 1.8, 1.8 and 1.9, respectively.

2.4. The temporal distribution of complete magnitude of earthquake catalogue

EMR method gives a moderate and stable Mc estimation, and it demonstrates superior performance when it is applied to realistic data from regional and global earthquake catalogues (Yi-Lei et al., 2016). But this method requires earthquake catalogue to be tectonically correlated with the regional seismic activity history. Thus, one of the major prerequisites of this method is that the amount of events is large enough and the tolerance of missing events is relatively low.

In this study, we not only obtain different Mc for different regions, but also analyze the temporal distribution of Mc. The Mc is obtained by adapting the specified time windows of different regions of our study area to the range of the event magnitude. For each tectonic zone in space, we select the earthquake frequency-magnitude distribution at all earthquake magnitude ranges within the corresponding time windows. Mc value is then achieved through the determination of the tectonic zone in which the Gutenberg–Richter law is verified in a separate manner. Therefore, the time window also isolates the magnitude range that meets the best local seismicity and local record capacity. But the disadvantage of this scenario is that the earthquake catalogue records are truncated if they are not included in the specified time window. If the time duration is not long enough, it may lead to incomplete or sparse catalogue data, and the G-R law describing the earthquake frequency-magnitude distribution may not hold over the entire magnitude range, and small areas may exhibit artificial types of seismicity, especially in regions of low seismicity frequency.

Due to these aforementioned drawbacks, this study employs the Maximum Curvature method (MAXC) and the GFT method with 90% (GFT-90%) and 95% (GFT-95%) good-of-fit confidence level to analyze the regional seismic completeness and its changes as a function of time, or namely as the temporal distribution of Mc in this study. MAXC places Mc value at the point where the derivative of magnitude-rate curve reaches its maximum (Hashash et al., 2001; Momayez et al., 1991). We choose this method because it has been successfully applied to regional earthquake catalogue analysis and it showed better stability for small-scale sample size over other methods (Mignan et al., 2011; Wiemer and Wyss, 2000). Hence, it is suitable for the regional earthquake catalogue, especially the sparse catalogue data.

Compared with other methods, MAXC has good stability and can provide the initial Mc than other methods due to the lower Mc value. GFT method obtains the minimum magnitude of completeness Mc through repeatedly adjusting the initial magnitude to fit the G-R power law distribution, or give a certain evaluation criterion (the goodness-of-fit value R in this study) to estimate the goodness of fit between the observed and synthetic distribution, i.e., at this Mc, the results will meet the evaluation criterion. For example, GFT-90% means that we define Mc as the point at which a G-R power law with the assumed a, b and Mc value can explain 90% of the data variability.

Despite its robustness and easy applicability, more importantly, combination of MAXC and GFT methods displays excellent performance in both the cumulative and non-cumulative frequency-magnitude distribution. Thus, the empirical cumulative distribution functions (such as exponential, lognormal, normal and exponential decay) to fit the incomplete part of realistic earthquake catalogue are no longer as required. In practice, it is suitable to our investigation very much (Vorobieva et al., 2013).

We establish the priorities of GFT-95% > GFT-90% > MAXC to choose the calculable and the highest priority Mc value as the final result of Mc. The first step for estimating Mc is to obtain the initial Mc by MAXC method. With the magnitude interval of 0.1, we adopt Mc by MAXC method as the initial fitting magnitude of GFT. We set the initial Mc plus 1.5 as the upper magnitude bound, and the initial Mc minus 0.9 as the lower magnitude bound, respectively. We use a maximum likelihood estimation to determine a and b values, and compute a synthetic G-R distribution with the same a, b and M values. To estimate the goodness of the fit between the observed and synthetic distributions, we choose a fitting criteria function R as

\[
R(a, b, M_i) = 100 - \left\{ \frac{\sum_{i=1}^{n} |S_i - B_i|}{\sum B_i} \times 100 \right\}.
\]
with

\[S_i = 10^{b_i - b_m} \]

(5)

where, \(b_i \) is the observed earthquake cumulative frequency of events in \(i \)th magnitude bin with \(M > M_i \), \(S_i \) is the predicted earthquake cumulative frequency of events in \(i \)th magnitude bin based on the G-R power law. \(R \) is the normalized fitting evaluation function. Finally, we choose the calculated \(M_c \) value of the highest priority as the final result based the setting priorities of GFT-95% > GFT-90% > MAXC.

Moreover, to analyze the seismicity rate changes over time in different regions, we also introduce a function of \(AS(t) \), where \(t \) is time. This function gives the ratio of seismicity rates within a period of time (time window) before and after a mainshock. A change in seismicity rate with a sharp onset can cause a sharp peak in function \(AS(t) \). Here we use function \(AS(t) \) to denote the typical time when seismicity changes in highest significance. We utilize the ZMAP package developed by Wyss and Habermann (1988) to fulfill our calculation and map generation.

2.5. The aftershock exclusion

It must be emphasized that the seismicity occurrence processes at different regions or fault systems may obey different statistical distributions following big earthquake events. Z-test is based on the assumption that the earthquake sequence is of independent and smooth process. Apparently, aftershocks may greatly lead to uncertainties or even erroneous judgment. Hence it is necessary to exclude the aftershock events from original earthquake catalogue data. In order to measure the significance level of regional seismicity rate changes after the Ms. 8.0 Wenchuan earthquake by Z-test method, the data independence needs to be satisfied in advance. Therefore, we note that, when we calculate these average values of \(M_c \), we also exclude aftershock data accordingly (Meyer, 1975b; Molchan and Dmitrieva, 1992).

Catalogue completeness is believed to suffer during time windows of highly aftershock active. It is worth mentioning that earthquake catalogue clustering and aftershock exclusion are of a very delicate process, and the criterion to distinguish aftershocks may introduce uncertainties to results. Statistically, the procedure of earthquake occurrence is an extremely complex non-stationary process. In most seismological research, the earthquake occurrence is assumed to follow a relatively simplified distribution model. Basically, there are two approaches to deal with the non-stationary difficulty. One is to exclude the aftershocks, after which the earthquake process can be considered as a stable Poisson process. The other is, however, to build a model to simulate the earthquake frequency change over time (Daniel et al., 2008; Freed, 2005; Peng et al., 2012).

In this study, we just simply exclude events for specified periods of time when it is likely that events are less completely cataloged. We have no attempt to remove all aftershock events following moderate to large earthquakes completely or to decluster the aftershocks to generate one namely well-distributed frequency-magnitude catalogue data. The major reasons are that we don't believe that the aftershocks are intrinsically unsuitable as target events, nor is it necessarily desirable because there is often no clear physical distinction to justify aftershocks and nature events.

More specifically, we exclude target earthquakes for 1 month following the events with magnitude between 6.0–6.6, 2 months following the events with magnitude between 6.6–7.0, and 3 months following the events with magnitude bigger than 7.0. We also exclude target events if they follow an event of \(M \geq 4 \) within 3 days and within 150 km at distance.

Eventually, the total number of seismic events involved in calculation of our study is 72,627. After exclusion of aftershocks, the total number of events above \(M_c \) reduces to 18,229. In Fig. 1, the red spots show that the epicenters of earthquakes occurred during ~5 years before the 2008 Wenchuan earthquake, while blue spots show earthquakes occurred during ~5 years after the Wenchuan earthquake. Note that the spots are evenly distributed with less clusters after exclusion of aftershocks. This improves data quality and provides a guarantee to reliability and stability of the subsequent calculations.

We then apply Z-test method to the pre-processed data for the sake of examining the statistical significance of the seismicity change in the surrounding regions of LFZ after the Wenchuan earthquake.

3. Results of Z-test method

We have used Z-test method to address seismicity rate changes in adjacent regions of LFZ ~5 years before and ~5 years after the 2008 great Wenchuan earthquake. The two sets of data required in Eq. (2) are those preprocessed data within ~5 years before the Wenchuan earthquake, and within ~5 years after this event, respectively. The data sampling interval \(n \) is 14 days. In Eq. (2), positive \(Z \) value represents seismicity decrease, and on the contrary, negative \(Z \) value indicates seismicity increase. The significance level is positively correlated with absolute value of \(Z \) (|Z|).

We place a grid with node space of 0.05° over the whole study area. For each node, we use the data of over 100 events within a range of 50 km in radius to calculate \(Z \) value. To guarantee the reliability statistically, we get rid of the values on nodes whose number of valid data are less than 100. Previous studies have ratified that the approach keeping the number of data fixed and changing the scale of statistical spatial window is more effective than the opposite way (Wiemer and Wyss, 1994). For convenience, we pick eight fault zones, in which \(Z \) value is purely positive/negative in order to compare our \(Z \)-value calculation results with results of Coulomb stress change in previous studies.

Our calculated \(Z \) value changes in different fault zones (Fig. 3), indicating that seismicity changes significantly in different fault zones after the Wenchuan earthquake. Seismicity in regions A, B, C, and D has increased (negative \(Z \) value in Fig. 3). The fault zones with seismicity increase include southern Longmenshan thrust fault, eastern Kunlun fault, Longguanshan fault and Huayingshan fault (negative \(Z \) value in Fig. 3). Nevertheless, seismicity in regions E, F, G, and H has decreased (positive \(Z \) value in Fig. 3). The fault zones with seismicity decrease include northern Longmenshan thrust fault, Songpan-Minjiang fault, Fubianhe fault in the east of Bayankala block, and northern and central Anninghe-Zemuhe fault (positive \(Z \) value in Fig. 3).

Coulomb stress changes due to the 2008 Wenchuan earthquake calculated by Parsons et al. (2008) and Wan et al. (2009) showed the increase of Coulomb stress in eastern Kunlun fault (region A in Fig. 3) and southern Longmenshan thrust fault (region B in Fig. 3), and the decrease of Coulomb stress in northern and central Longmenshan thrust fault (region C in Fig. 3) and Songpan-Minjiang fault (region F in Fig. 3). Qian and Han (2011) suggested that the Coulomb stress in northern Longquanshan fault (region C in Fig. 3) increased significantly after the Wenchuan earthquake, and the increment gradually decreased from north to south along the fault. Shan et al. (2009) showed that the Wenchuan earthquake induced Coulomb stress drop along Fubianhe fault (region G in Fig. 3).

All these previous studies above are consistent with our calculation results of \(Z \) value. However, some regions have coseismic Coulomb stress changes by the 2008 Wenchuan earthquake contradicting our statistical results. For example, calculations of
Coulomb stress changes from many researchers (Luo and Liu, 2010; Parsons et al., 2008; Wan et al., 2009) showed that the Coulomb stress in southern Xianshuihe fault increased significantly, but in our work, the value of Z at the same place is positive, indicating a seismicity drop. On Anninghe-Zemuhe fault zone, our Z value calculation results contradict with the results of coseismic Coulomb stress changes calculated by some studies. For example, Wan et al. (2009) suggested that the Wenchuan earthquake almost had no effect on Anninghe-Zemuhe fault, but northern Anninghe-Zemuhe fault has significant seismicity decrease (region H has positive Z value in Fig. 3). However, our results coincide with calculations of Coulomb stress changes by Luo and Liu (2010), which show the decrease of Coulomb stress along Anninghe fault.

4. Regional seismicity versus time

We have computed the significance level of seismicity rate changes in major fault zones of southeastern Tibetan Plateau before and after the Wenchuan earthquake, but we still have uncertainties regarding whether these seismicity rate changes and their relationship to Wenchuan event. To better explain the relationship between seismicity rate changes and the Wenchuan earthquake, we calculate the value of AS(t) with respect to time. As shown by red curve in Fig. 2(b), a change in seismicity rate with a sharp onset corresponds to a sharp peak in AS(t) just while the great 2008 Ms. 8.0 Wenchuan earthquake happened. We also calculate the changes of cumulative number of earthquakes in case that AS(t) cannot perform well when the number of sample size is insufficient.

We first focus on the four regions where seismicity increases (negative Z value in Fig. 3). In regions A and B, shortly after the great 2008 Ms. 8.0 Wenchuan earthquake, slope of cumulative number of seismic events occurs a sudden change (solid curves in Fig. 4a and b), and AS(t) shows a minimum or trough (dashed curves in Fig. 4a and b). In region C, the slope of cumulative number increases significantly around 2008, but the AS(t) curve does not have a trough at this time (Fig. 4c). This is different from results in regions A and B. The most possible reason leads to the difference is that in region c, the number of events before 2008 is much less than that after 2008. Hence the contribution of data before 2008 is neglected when compute AS(t), and this causes a roughly horizontal line and low values before 2008 (Fig. 4c). Seismicity rate changes in the three regions above (regions A, B and C) are highly correlated with the 2008 Wenchuan earthquake. However, AS(t) in region D does not reach a minimum in 2008 (dashed curve in Fig. 4d), indicating that the increase of seismicity in region D is not caused by the 2008 Ms. 8.0 Wenchuan earthquake. It is worth mentioning that AS(t) in regions A, B and C reaches a maximum point around 2011 (see dashed curves in Fig. 4a–c), and this suggests that the effects of the Wenchuan earthquake may vanish in the whole area after ~2011.

We then analyze the four regions where seismicity decreases (positive Z value in Fig. 3) in the same way. AS(t) in regions E, F and H shows a relatively sharp peak shortly after May, 2008 (dashed curves in Figs. 4e, f and h), suggesting a strong correlation between seismicity in these regions and the Wenchuan earthquake. In regions G, it is difficult to decide whether a peak exists or not, but AS(t) does reach a maximum around 2008. Therefore, we suggest that in region G, to some extent, regional seismicity is related to the Wenchuan earthquake. We observe that the peak values of |AS(t)| at the occurrence of main shock (if exists) in all the cases discussed above are >2.57, and this indicates that our conclusions have passed the 99% confidence limit according to Z-test method.

In previous studies (Wiemer and Wyss, 2000; Wyss, 2000), it has been demonstrated that, by average, a major earthquake tends to turn on the seismicity of neighboring volumes rather than to turn off it. We find a similar trend in our study. The AS(t) curves of regions E–H seem to be more undulant, and the peaks at the occurrence of main shock look less distinctive (compare dashed curves in Fig. 4e–h with those in Fig. 4a–c). These results suggest a weaker correlation between seismicity in regions E–H and the 2008 Ms. 8.0 Wenchuan earthquake than that between seismicity in regions A–C and this event. However, many reasons and factors may lead to the similar features, so it is difficult to make a decisive conclusion herein. For example, one possible reason is that the data size is too small in regions of F and H, causing undulant AS(t) curves (Fig. 4f and h). Another possible reason is that, after data of seismic events below Mc are cut off, the ratio between small and large events changes in favor of large events, probably leads to some variations to features of the AS(t) curve. To address this issue comprehensively, the relationship between Z value and seismic magnitude will be discussed specifically in next section.

5. Seismicity versus seismic magnitude

Besides time factor, the change of seismicity rate following a big earthquake also depends on and correlates with the seismic magnitude range: seismicity rate increases sharply within a certain seismic magnitude range, but drops in another range (Eneva et al., 1994; Habermann, 1983a). In Fig. 5, we plot three sub-figures for each of the eight regions. The first two sub-figures show the relationship between seismic magnitude and seismicity rate, and the third one shows relationship between seismic magnitude
and the Z value. If the earthquake catalogue is complete at all magnitude ranges, we can just look at the b-value changes to examine the rate changes with respect to different magnitudes. However, if seismic rate changes are caused by artificial factors such as observation network capabilities or improper selection of Mc, seismic rate changes for small events should be much more significant than those for big events, neither they can reflect the realistic physics. If seismic rate changes are induced naturally by an earthquake, seismic rate changes should be distributed evenly through the whole range of seismic magnitude, not depending on small or big events. Compared with seismic rate changes for big events, seismic rate changes for small events might be more significant, because our statistical calculation includes much more small-event samples than big-event samples. We show the seismicity rate changes with seismic magnitude for the eight regions in Fig. 5.

Region A is eastern Kunlun fault (As shown in Figs. 1 and 3). Seismicity rates for all the magnitudes have increased after the Wenchuan earthquake along this fault (middle panel in Fig. 5a). The cumulative seismicity after the Wenchuan earthquake is 1.7 times higher than that before this event (top sub-figure in Fig. 5a). The Z value curve indicates that seismicity rate changes for Ms < 3.0 pass 95% significance level (bottom sub-figure in Fig. 5a). The reason why seismicity rate changes for larger events get a lower significance level would be that events with Ms > 3.5 are few for Z-test method.

In region B, or southern Longmenshan fault (Figs. 1 and 3), yields an increase of 55% in cumulative seismicity (Fig. 5b). We stress that the Wenchuan earthquake occurred in the central and northern segments of this fault and ruptured 3/7 of its total length (Wen et al., 2009). The cumulative seismicity curve tells us few events with Ms > 4.0 within 5 years before the Wenchuan earthquake. Hence, the significance of seismicity rate changes for Ms > 4.0 cannot be tested. After the Wenchuan earthquake, events with Ms > 4.0 began to occur, and the Ms = 7.1 Lushan earthquake is the largest one.

Region C is Longquanshan fault (Figs. 1 and 3) in Sichuan basin, a rigid block with low seismicity. Before the Wenchuan earthquake, only several events in this region occurred and the seismic magnitudes of all events were below Ms = 2.5. This region stays in a relatively stable state, because it is located inside the rigid block, Sichuan basin. After the 2008 Wenchuan earthquake, seismicity in this region increases significantly and hundreds of events have occurred. The Z value curve clearly shows that seismicity rates for Ms < 2.5 have changed significantly, and the seismicity rate changes for Ms > 2.5 can also be observed through the cumulating seismicity curve (Fig. 5c).
Region D is Huayingshan fault (Figs. 1 and 3). It is also inside Sichuan basin, but seismicity in this region is somehow active and the seismicity curve in this region behaves like that of in region B (Fig. 5d and b). We have demonstrated in the previous section that seismicity rate change in region D is not correlated with the Wenchuan earthquake (Fig. 4d). Hence, we do not discuss region D here.

Region E is northern and central Longmenshan fault (Shown in Figs. 1 and 3). The energy release by the Wenchuan earthquake significantly decreases the number of small events, but on the
contrary, the number of large events increases. The cumulating seismicity per year reduces by 35% after the Wenchuan earthquake (top sub-figure in Fig. 5e). We need to mention that this region stays in the aftershock zone of the Wenchuan earthquake and our calculation has excluded all the aftershock data as described in Section 2. It is quite difficult to decide whether a large event is aftershock or not, hence some uncertainty may exist in our calculation results, but the overall seismicity in this region has decreased (Fig. 5e).

Situations of regions F, G and H are quite similar. Seismicity rates in these three regions decrease significantly for almost all the seismic magnitudes (Fig. 5f–h). This shows that seismicity of Songpan-Minjiang fault, Fubianhe fault and Anninghe-Zemuhe fault is suppressed by the Wenchuan earthquake.

In most of the regions discussed above, seismicity rate changes for Ms > 3.0 have passed 95% significance level. Besides, turning on or off seismicity by the Wenchuan earthquake is reflected for most of the seismic magnitudes. Therefore, seismicity changes calculated by our statistical method are not caused by artificial factors, or in another word, our calculation results are reliable.

6. Discussions and conclusions

Earthquake triggering is the procedure by which stress migration and change are associated with a big earthquake occurred. It can escalate or decelerate seismicity in its surrounding regions or even trigger earthquake at great distance. On May 12, 2008, Wenchuan Ms8.0 earthquake struck the Longmenshan fault zone, where is one of the most seismicity active regions around the global. Obviously, it had a significant impact on seismicity pattern of this region. Following this event, in some its surrounding regions, earthquake cumulative frequency increased significantly, while some other areas had reduced earthquake cumulative frequency. Therefore, an important practical issue is to quantitatively or statistically justify the rate changes of earthquake occurrences at regional scale, in particular, for operational forecasting and risk evaluation by checking whether such changes are actually statistically significantly correlate to the occurrence of Wenchuan Ms8.0 earthquake or not. In this paper, for the first time, we examine the complete seismicity catalogue in Sichuan-Yunnan region of China, to detect the significance of these changes before and after Wenchuan Ms8.0 earthquake.

Firstly, assessing the magnitude of completeness Mc of earthquake catalogue is an essential and compulsory step for any seismicity analysis. We verify the effectiveness of combining standard statistical methods (setting priorities as GFT-95% > GFT-90% > MAXC) of addressing the spatial and temporal changes of Mc. The results show minimum magnitude of completeness Mc of Sichuan-Yunnan region earthquake catalogue varies with respect of time and space. During the January 1, 2003 to April 20, 2013, the smallest magnitude Mc fluctuates from 2.1–1.3 (Fig. 2b), and the spatial distribution of consistency is good. When analyzing the changes of seismicity rates before and after Wenchuan Ms8.0 earthquake, we choose the relatively higher value of Mc during the study period, ensuring the reliability of earthquake catalogues used in the entire study period.

The Z-test statistical method has been applied to examine the seismicity rate changes and its significance in eight fault zones ~5 years before and ~5 years after the Wenchuan Ms8.0 earthquake, identify the triggering and quiescence patterns following the 2008 Wenchuan Ms8.0 earthquake. We find seismicity rate increasing in some regions, while in other regions seismicity rate decreasing. The change rate conforms to the Z-test with significance at 99% confidence intervals in most areas. In most of the regions, the sign of the seismicity rate change agrees with the sign of the Coulomb stress change of previous investigations.

In summary, our results propose that the seismicity in eastern Kunlun fault, southern Longmenshan fault, Longquanshan fault and Huayingshan fault has been facilitated, but seismicity in northern and central Longmenshan fault, vicinity of the Songpan-Minjiang fault, and Fubianhe fault in Bayankala block has dropped significantly. Seismicity in northern and central Anninghe-Zemuhe fault zone does not exhibit correlation with the Wenchuan Ms8.0 earthquake. Our statistical results coincide with seismicity change assessment based on calculations of Coulomb stress change in previous studies for most of these regions except Xianshuihe fault zone and Anninghe-Zemuhe fault zone, suggesting that these two fault zones still stay in a state of interseismic locking.

To examine the time of a single seismicity rate change, the Z-test is applied to the data by a function namely as AS(t). Results show that, influenced by Wenchuan Ms8.0 earthquake, the seismicity rates increased in East of Kunlunshan fault; South of Longmenshan fault and Longquanshan fault; Seismicity rate decreased in Huya-Minjiang fault, Fubianhe fault and North of An'ninghe-Zemuhe fault. We find seismicity rate decreases in seismicity are not as noticeable as increases from the curves of earthquake cumulative frequency with time and the values of AS.

It is common consensus that earthquake releases elastic energy potential in the lithosphere under evolution. Therefore, the Coulomb stress change is naturally considered as an efficient tool to
predict the possible aftershock regions following big event. However, geophysical and geological communities have to admit that our current understanding of the earthquake occurrence mechanisms is far away from sufficient to forecast earthquakes. Many simplified theories, models and idealized critical parameters applied to forecast future seismicity do not agree with the observed data and geological evidence. For example, large earthquakes often occur in the regions with low seismic risk indicated by hazard maps in orogenic belts or continental seismology zones (Stein et al., 2012). In fact, the geophysical and geological communities have also failed to answer if earthquake forecast (issuing reliable and accurate alarms of imminent large and damaging earthquakes) was possible till present. One important reason attributed to the introduced uncertainties when we determine the values of critical parameters in these simplified models, leading these simplified models are not purely deterministic eventually.

We found it necessary to figure out a new observation-based paradigm for aftershock occurrence and subsequent nucleation of big seismic events. For example, we can assume that the lithosphere is a well-connected system with the fault plane and slip distribution for each earthquake, and magnitude of each earthquake is the result from an essentially stochastic process rather than predetermined. We also should focus on the mechanism for storing elastic energy in the lithosphere that has heretofore being considered as discrete and separate faults. We recognize the existence of fundamental problems in present theories on earthquake occurrence and earthquake forecast, and try to search for a new paradigm. We demonstrate that statistical analysis of seismic data, with other conventional methods, for example, calculations of Coulomb stress changes, can be integrated together to evaluate regional seismicity and future earthquake hazards and their mitigation. Therefore, our methodology of comprehensively preprocessing the earthquake catalogue data set proposed in this study, together with the Z-test statistical method and results may serve as a particularly good candidate to overcome current difficulties to justify the regional seismicity intensity following large seismic events.

By calculating changing curves of accumulative seismic frequency with earthquake magnitude and changing curves of z value versus earthquake magnitude of each zone, we can find in the areas triggered or restrained by Wenchuan Ms. 8.0 earthquake, the seismic frequency of each magnitude has changed. Namely, the change of seismicity rates does exist, which is not caused by the human factors, such as the level of seismic monitoring and so forth. On the account of numerous medium and small earthquakes, which are less than 3.0 Magnitude, their changes of seismicity rates are more obvious, which can further infer the changing feature of regional seismic activity. It’s highly reliable to analyze seismicity rates of each area with the instrumental earthquake catalogues, which should be paid more attention in the future. By combining with the result of Coulomb stress, we can make more accurate judgment on seismic hazard assessment.

Finally, the distribution of Z value versus seismic magnitude indicates that the significance of seismic rate changes for large events is much lower than that for small events, mostly probably because of small sample size of large events. Likewise, the AS(t) curves of nearly half of the selected regions are severely undulated, leading to difficulties in determining the correlation between seismicity rate changes and the mainshock. Hence, the applications of statistical methods to seismology are basically limited by sample size properly reflecting the physics. Even if data size of the original earthquake catalogue is large enough, it is also difficult for the desired data to meet the requirements of hypothesis test after excluding aftershocks and small events below Mc. Thus, some better and new statistical methods are expected to overcome these difficulties in the future studies.

Acknowledgements

This research is partially supported by National Basic Research Program of China under grant number 2014CB845906, and National Science Foundation of China (41590864, 41274103 and 41404078). It is also partially supported by the CAS/CAFEA international partnership Program for creative research teams (No. KZDD-EW-TZ-19 and KZDD-EW-TZ-15). Gang Luo acknowledges support from the Recruitment Program of Global Young Experts in China, the Chinese Academy of Sciences and University of Chinese Academy of Sciences (Y52901FEJ2 and 118800M015), and support from the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology; SKLG2012K030). We complete our calculation and mapping with the help of ZMAP packages developed by Max Wyss et al. And we appreciate Dr. Shengle Li for providing the complete earthquake catalogue utilized in this study.

References

