Prediction of an U_2S_3 -type polymorph of Al_2O_3 at 3.7 Mbar

Koichiro Umemoto* and Renata M. Wentzcovitch

Minnesota Supercomputing Institute and Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455

Edited by Ho-kwang Mao, Carnegie Institution of Washington, Washington, DC, and approved February 27, 2008 (received for review December 18, 2007)

We predict by first principles a phase transition in alumina at \approx 3.7 Mbar and room temperature from the CalrO₃-type polymorph to another with the U₂S₃-type structure. Because alumina is used as window material in shock-wave experiments, this transformation should be important for the analysis of shock data in this pressure range. Comparison of our results on all high-pressure phases of alumina with shock data suggests the presence of two phase transitions in shock experiments: the corundum to Rh₂O₃(II)-type structure and the Rh₂O₃(II)-type to CalrO₃-type structure. The transformation to the U₂S₃-type polymorph is in the pressure range reached in the mantle of recently discovered terrestrial exoplanets and suggests that the multi-megabar crystal chemistry of planetforming minerals might be related to that of the rare-earth sulfides.

alumina | first-principles calculation | high-pressure phase transition | postperovskite | rare-earth sulfide structure

A lumina, Al₂O₃, is an important compound in high-pressure technology and geophysics. It is used as window material in shock-wave experiments (1). Ruby, Al₂O₃ doped with chromium, serves as a pressure calibrant in diamond-anvil-cell experiments (2). In the Earth's mantle, Al₂O₃ is a major chemical component in solid solution with MgSiO₃ garnet, perovskite (PV), and postperovskite (PPV). This formation of solid solutions with alumina changes the properties of the pure phases, such as their equations of state, thermoelastic properties, phase boundaries, electrical conductivity, oxidation, and spin states of iron impurities in MgSiO₃, etc. (e.g., refs. 3–9).

The experimental and theoretical literature on phase transitions in Al_2O_3 is quite extensive (10–19). Two pressure-induced transitions have been predicted theoretically (10-12, 16-18) and confirmed experimentally (13-15, 19): from corundum (space group $R\bar{3}c$), the stable ambient form, to the Rh₂O₃(II)-type structure (space group *Pbcn*) at $\approx 80-100$ GPa and then to the CaIrO₃-type PPV structure (space group *Cmcm*) at \approx 130 GPa. These pressures are realized in the Earth's mantle. The CaIrO₃type polymorph is the highest-pressure form identified experimentally so far for both Al2O3 and MgSiO3. A phase transition in the CaIrO₃-type phase in Al₂O₃ or MgSiO₃ should change the properties of their solid solution, a key input in the modeling of planetary interiors. A first-principles study predicted the dissociation of CaIrO₃-type MgSiO₃ into CsCl-type MgO and cotunnite-type SiO₂ at \approx 1.1 TPa (20), a pressure relevant for the giant planets and exoplanets. The same type of dissociation was also predicted for NaMgF₃, a low-pressure analog of MgSiO₃ (21). However, CaIrO₃-type Al₂O₃ is expected to undergo a nondissociative post-PPV transition because the equivalent dissociation products (AlO and AlO₂) are unlikely to form. Here, we report the first-principles prediction of a phase transition in Al₂O₃ from the CaIrO₃-type polymorph to another with the U_2S_3 -type structure. The latter structure was suggested as a potential post-PPV structure in ABX₃ compounds in the absence of a dissociation transformation; in MgSiO₃ and NaMgF₃, the U₂S₃type phase remains metastable with respect to their dissociation products (22).

Computational Details. Calculations were performed by using the local-density (LDA) (23) and generalized-gradient approximations (GGA) (24). The valence electronic configurations used for the generation of Vanderbilt ultrasoft pseudopotentials (25) are $3s^23p^03d^0$ and $2s^22p^4$ for Al and O, respectively. Their cutoff radii are 1.8, 1.8, and 2.0 a.u. for Al and 1.0 and 1.0 a.u for O. The plane-wave cutoff energy is 150 Ry. We used variable-cell-shape molecular dynamics (26, 27) for structural optimization under arbitrary pressures. Dynamical matrices were computed at wave vectors \mathbf{q} by using density-functional perturbation theory (28, 29). The numbers of formula units in the unit cells, k points in the irreducible wedge, and **q** points are (2, 10, 4) for corundum, (4, 4, 8) for Rh₂O₃(II)-type, (2, 24, 6) for CaIrO₃-type, and (4, 3, 8) for U₂S₃-type Al₂O₃. Force constants are extracted to build dynamical matrices at arbitrary phonon q vectors. Vibrational contributions to the free energy are calculated by the quasiharmonic approximation (QHA) (30). In this approximation, the free energy is

$$F(V, T) = E_0(V) + \frac{1}{2} \sum_{i,\mathbf{q}} \hbar \omega_{i,\mathbf{q}}(V) + \sum_{i,\mathbf{q}} k_{\mathrm{B}} T \log \left(1 - \exp\left(-\frac{\hbar \omega_{i,\mathbf{q}}(V)}{k_{\mathrm{B}}T}\right)\right), \quad [1]$$

where $E_0(V)$ is the static total energy and $\omega_{i,\mathbf{q}}(V)$ are the phonon frequencies. The numbers of **q** points in the irreducible Brillouin zone used for the summation in Eq. **1** are 116, 196, 124, and 112 for corundum, Rh₂O₃(II)-type, CaIrO₃-type, and U₂S₃-type Al₂O₃ respectively. Calculations were done using the Quantum-ESPRESSO package (31).

Results and Discussion

The U₂S₃-type structure (Fig. 1) is closely related to the CaIrO₃type structure (32). The space group of the U₂S₃-type phase is *Pmcn* (or *Pnma* in the standard setting), which is a subgroup of *Cmcm*, CaIrO₃-type phase's space group. During the transformation the octahedral layers of the latter connect and produce the U₂S₃-type structure with a continuous 3D network of Al–O bonds.

The calculated equations of states shown in Table 1 are consistent with those of previous studies (16–18). Static enthalpy calculations (Fig. 2) clearly show the sequence of stable phases. The static transition pressures using the LDA (GGA) are 82 (88), 137 (145), and 373 (380) GPa for corundum-to-Rh₂O₃(II)-type,

Author contributions: K.U. designed research; K.U. performed research; K.U. and R.M.W. analyzed data; and K.U. and R.M.W. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

^{*}To whom correspondence should be addressed. E-mail: umemoto@cems.umn.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/ 0711925105/DCSupplemental.

^{© 2008} by The National Academy of Sciences of the USA

Fig. 1. Crystal structures of CalrO₃-type (A) and U₂S₃-type Al₂O₃ (B). Blue and red spheres denote aluminum and oxygen, respectively. Al1 and Al2 are aluminum in the A and B sites, respectively. Polyhedra are drawn only around Al₂ for visualization purposes. For the CaIrO₃-type phase at 400 GPa, lattice constants are (a, b, c) = (2.264, 7.332, 5.658) Å. Atomic coordinates are Al₁ (4c) (0, 0.2516, 0.75), Al₂ (4a) (0, 0, 0), O₁ (4c) (0, 0.9134, 0.75), and O₂ (8f) (0, 0.3525, 0.4298). For the U₂S₃-type phase at 400 GPa, lattice constants are (a, b, c) =(2.287, 6.350, 6.359) Å. Atomic coordinates are Al1 (4c) (0, 0.2535, 0.8051), Al2 (4c) (0, -0.0597, -0.0143), O1 (4c) (0, 0.9494, 0.7254), O2 (4c) (0, 0.3752, 0.0500), and $O_3(4c)$ (0, 0.3092, 0.3835), in the Pmcn setting where the inversion center is set at (1/4, 1/4, 0) for comparison with the CaIrO₃-type phase. In the standard Pnma setting, lattice constants and atomic coordinates of the U_2S_3 type phase are (a, b, c) = (6.359, 2.287, 6.350) Å, Al₁ (4c) (0.8051, 0.25, 0.5035), Al2 (4c) (-0.0143, 0.25, 0.1903), O1 (4c) (0.7254, 0.25, 0.1994), O2 (4c) (0.0500, 0.25, 0.6252), and O3 (4c) (0.3835, 0.25, 0.5592). Numbers in parentheses represent Al-O bond lengths in angstroms at 400 GPa.

Rh₂O₃(II)-type-to-CaIrO₃-type, and CaIrO₃-type-to-U₂S₃-type transitions, respectively. These pressures are consistent with results from other calculations (16-18). A transition to the P63/mmc structure, another candidate form for a post-PPV phase found in NaMgF₃ (22), was not found in Al₂O₃ up to 700 GPa. In NaMgF₃ the U₂S₃-type phase is produced by a soft phonon in the CaIrO3-type phase. In Al2O3 no phonon softening is observed in the CaIrO₃-type and in the U₂S₃-type phases at least up to 700 GPa (Fig. 3). Therefore, both phases should be dynamically stable within this pressure range. Comparison between the crystal structures of the two polymorphs shows that the average Al₁–O and Al₂–O bond lengths (see Fig. 1, legend) decrease and increase across the phase transition, respectively, producing more similar aluminum polyhedra with coordination $\hat{8}(=7+1)$ and 7 as opposed to $\hat{8}(=6+2)$ and 6 as in the CaIrO₃-type phase. This change is illustrated in Fig. 1, where the average Al₁–O bond length is shown to change from 1.751 Å to 1.739 Å, whereas the Al₂–O bond length changes from 1.594 Å to 1.662 Å at 400 GPa. These changes produce an elongation in the crystal structure along the a and c axes and a compression along b; b and c become very close to each other and the U_2S_3 type phase becomes slightly less anisotropic than the CaIrO₃type phase. U₂S₃-type Al₂O₃ remains insulating. The LDA electronic band gaps of the U_2S_3 -type phase are 6.7 and 6.4 eV at 400 and 700 GPa, respectively. When the U_2S_3 -type phase is decompressed, it transforms back to the CaIrO₃-type phase below 150 GPa.

The quasi-harmonic phase boundaries in the Al_2O_3 system are displayed in Fig. 4. The corundum-to- $Rh_2O_3(II)$ -type and

Table 1. The third-order Birch–Murnaghan equation of sta	tes for
Al ₂ O ₃ polymorphs calculated by LDA	

2				
Phase	Source	<i>V</i> , a.u. ³	<i>B</i> , GPa	Β'
Corundum				
0 GPa, static	Present calc.	283.46	259.8	4.02
	Calc. (16)	273.30	248	4.13
	Calc. (17)	286.32	252.6	4.237
0 GPa, 300 K	Present calc.	286.73	251.0	4.04
	Calc. (18)	286.23	240.5	3.94
	Exp. (33)	287.81	254.4	4.275
Rh ₂ O ₃ (II)-type				
0 GPa, static	Present calc.	276.88	264.7	3.93
	Calc. (16)	267.57	252	4.07
	Calc. (17)	279.53	258.2	4.140
80 GPa, 300 K	Present calc.	227.62	544.8	3.37
	Calc. (18)	225.94	530.2	3.33
CalrO₃-type				
0 GPa, static	Present calc.	269.42	251.6	4.11
	Calc. (16)	261.70	231	4.38
	Calc. (17)	271.90	241.6	4.464
	Exp. (19) (300 K)	267.23	249	4 (fixed)
150 GPa, 300 K	Present calc.	198.38	786.8	3.24
	Calc. (18)	196.68	762.6	3.31
U ₂ S ₃ -type				
400 GPa, static	Present calc.	155.83	1,562	3.01
400 GPa, 300 K	Present calc.	156.56	1,552	3.00

Rh₂O₃(II)-type-to-CaIrO₃-type phase boundaries have negative Claperyron slopes (17, 18), $dP/dT = \Delta S/\Delta V$. In contrast, the CaIrO₃-type–U₂S₃-type phase boundary has a positive slope of + 9.3 MPa/K at 1,000 K. This positive slope can be understood on the basis of the vibrational density of states (VDOS). Fig. 5 shows that peaks at low frequencies shift upward across the post-PPV transition, reflecting the shorter average Al₁–O distances in the U₂S₃-type phase. This decreases the vibrational entropy change across the transitions and the relative stability of

Fig. 2. Relative static LDA enthalpies of Al_2O_3 polymorphs with respect to the CalrO₃-type phase. Dashed vertical lines denote corundum-Rh₂O₃(II)-type, Rh₂O₃(II)-type to CalrO₃-type, and CalrO₃-type to U₂S₃-type transition pressures, respectively. The perovskite form of Al_2O_3 does not have a stability field, consistent with previous calculations (16–18).

Fig. 3. Phonon dispersions of CalrO₃-type and U₂S₃-type Al₂O₃ show no instabilities up to 700 GPa. Pressures are static LDA values.

the U_2S_3 -type phase with increasing temperature. The downward shift of the high-frequency peak reflects the increase of the average Al_2 -O distances, increasing the entropy. The influence of the low-frequency modes is predominant in the entropy and

Fig. 4. Calculated phase boundaries in Al_2O_3 . Solid (dashed) lines denote the LDA (GGA) results. The CalrO₃-type to U_2S_3 -type transition pressures by LDA (GGA) are 369 (376) GPa at 0 K, 370 (377) GPa at 300 K, 378 (385) GPa at 1,000 K, and 386 (393) GPa at 2,000 K.

Fig. 5. Phonon densities of states of CalrO_3-type (blue) and $U_2S_3\text{-type}$ (red) Al_2O_3 at 400 GPa.

the Clapeyron slope remains positive even at high temperatures. However, this downward frequency shift at high frequencies produces a peculiar phase boundary with positive slope but slightly negative curvature; the Clapeyron slopes at 1,500 K and 2,000 K are +8.2 and +7.7 MPa/K, respectively.

Al₂O₃ is important for dynamic compression technology, because it is used as window material. In raw shock data to 340 GPa, no direct evidence of phase transition was noticed, although there was an atypical relationship between shock velocity (u_s) and particle velocity (u_p) : $u_s = C + Su_p$ in which S (0.957) is unusually small, implying a possibility of sluggish phase transformations (34). However, a comparison between our static LDA results on Al₂O₃ and raw shock data to 340 GPa (34, 35) strongly suggests the presence of all three phases stable below 340 GPa in the shock data (Fig. 6). With shock data alone, it is difficult to resolve phase transitions accompanied by small density changes that could be comparable to the limit of detectability. The transition pressures in shock data are much higher than the calculated ones. This suggests that the phase transitions in Al₂O₃ have considerable hysteresis. This is consistent with observations from static compression experiments in which sample annealing was necessary for phase transitions (15, 17, 19). According to Fig. 6, the transition pressure from the corundum to Rh₂O₃(II)-type phase in shock experiments should be \approx 120 GPa. It is interesting to note that this transition pressure is close to the pressure at which optical transparency (36) and electrical resistivity (37) were reduced in shock compression, implying a strong relationship between these reductions and the corundum-to-Rh₂O₃(II)-type phase transition that may induce more defects. A recent comparative study of shock-compressed materials suggested that Al_2O_3 with an unusually small S might collapse into a more incompressible phase above 340 GPa (38). The U_2S_3 -type phase is denser than the CaIrO₃-type phase by $\approx 1.6\%$ at 400 GPa and 300 K. However, their bulk moduli are very similar: 1,558 GPa and 1,552 GPa in the CaIrO₃-type and the U_2S_3 -type phases, respectively. This contrasts with the case of NaMgF₃. Through the post-PPV transition in NaMgF₃, charge densities between Na and F increase and bonding between MgF₆ layers by Na atoms is strengthened (22). As a consequence, the compressibility of the b axis, which is perpendicular to the Mg-F

Fig. 6. Static LDA pressure vs. compression. ρ is the calculated density of each phase and ρ_0 is that of corundum at 0 GPa. Horizontal dashed lines represent calculated transition pressures. Numerical data of static LDA volumes for all four phases as functions of pressure, which are used to calculate compression, are given in supporting information (SI) Table S1. Experimental shock data are shown by black (34) and gray (35) circles. The black dashed line is a compression curve obtained by applying the Rankine–Hugoniot equations ($\rho = \rho_0 U_s / (U_s - U_p)$, $P = \rho_0 U_p U_s$) to a single linear fit to the Hugoniot data ($U_s = 8.74 + 0.957U_p$) (35). Error bars for compression are estimated from the size of datum symbols in ref. 34, which correspond to an error of $\approx 1\%$ in density. Estimated error bars for pressure are within datum symbols.

layers, decreases and the bulk modulus increases from 282 to 292 GPa at 50 GPa. In contrast, in Al_2O_3 , the charge density between Al_1 and O atoms is already high in the CaIrO₃-type phase. There is no significant increase/decrease of charge density between the Al_2 -O layers through the transition (Fig. 7), although the distance between layers decreases.

This post-PPV transition in Al_2O_3 occurs at pressures exceeding those achieved in the Earth's mantle (≈ 135 GPa at the core-mantle boundary) and should not alter our views of this region. However, it might affect our understanding of the rocky mantles of recently discovered terrestrial exoplanets (39–41) because it could change the solubility of Al_2O_3 in CaIrO₃-type MgSiO₃. The change in coordination from 6 to 7 in the B site suggests that Al_2O_3 might ex-solve from MgSiO₃,

Fig. 7. Charge densities on the (200) planes of CalrO_3-type and $U_2S_3\text{-type}$ Al_2O_3 at 400 GPa.

- McQueen RG, Isaak DG (1990) Characterizing windows for shock-wave radiation studies. J Geophys Res 95(B13):21753–21765.
- Chen NH, Silvera IF (1996) Excitation of ruby fluorescence at multimegabar pressure. Rev Sci Instrum 67:4275–4278 and references therein.
- Wood BJ, Rubie DC (1998) The effect of alumina on phase transformations at the 660kilometer discontinuity from Fe-Mg partitioning experiments. *Science* 273:1522–1524.
- Xu Y, McCammon C, Poe BT (1998) The effect of alumina on the electrical conductivity of silicate perovskite. Science 282:922–924.
- Zhang J, Weidner DJ (1999) Thermal equation of state of aluminum-enriched silicate perovskite. Science 284:782–784.

in particular, from the smaller 6-fold B site occupied by silicon in the CaIrO₃-type structure. The ex-solution of Al_2O_3 could affect the electrical and thermal conductivities of the CaIrO₃type solid solution, as the incorporation of Al_2O_3 affects the electrical conductivity of MgSiO₃ perovskite in the presence of iron (4).

The prediction of the U_2S_3 -type structure of Al_2O_3 suggests a likely close relationship between the multi-megabar crystal chemistry of planet-forming minerals and that of rare-earth sulfides, $RR'S_3$ (R, R' = lanthanoid or actinoid). Several crystal structures, including the corundum, CaIrO₃-type, and U_2S_3 -type structures, are produced in the $RR'S_3$ family of compounds depending on atomic species and preparation conditions (42). In refs. 42 and 43, the structure corresponding to CaIrO₃-type is referred to as NdYbS₃-type.[†] The perovskite structure (GdFeO₃-type) also occurs in RR'S₃ compounds. At high temperature, LaYbS₃ is in the α phase with the GdFeO₃type structure, whereas at low temperatures it adopts the β phase with the NdYbS₃-type (i.e., CaIrO₃-type) structure (44, 45). This is reminiscent of the postperovskite transition in MgSiO₃ with a positive Clapeyron slope (46-48). The relationship between these crystal structures and cation radii can be summarized as follows: the corundum structure occurs with small R and R' radii (e.g., Yb_2S_3), the U_2S_3 -type structure with large radii, and the CaIrO₃-type and the GdFeO₃-type structures with large R in the A site and small R' in the B site (e.g., NdYbS₃ and α -LaYbS₃). This chemical-pressure effect produces a sequence of structures consistent with that induced by pressure in Al₂O₃. The ratios $(V_{Al_1} + V_{Al_2})/V_{Al_2O_3}$, where V_{Al_1} and V_{Al_2} are polyhedral volumes around Al_1 in the A site and Al₂ in the B site and $V_{Al_2O_3}$ is the formula unit volume, are 0.43, 0.62, and 0.68 in corundum, CaIrO₃-type, and U₂S₃-type Al_2O_3 . These are very close to corresponding ratios in Yb₂S₃ (0.42) (49), NdYbS₃ (0.62) (43), and \hat{U}_2 S₃ (0.69) (50), respectively. In calculating V_{Al_1} and V_{Al_2} , the coordination numbers of Al₁ at the A site and Al₂ at the B site are set to be 6 and 6, 8 and 6, and 8 and 7 for corundum (where there is no distinction between Al_1 and Al_2), CaIrO₃-type, and U₂S₃-type Al₂O₃. Therefore, one can anticipate that other RR'S₃ structures may also play an important role in stabilizing sequioxides analogous to Al₂O₃ under pressure, or solid solutions and intermediate compounds of Fe₂O₃, Al₂O₃, CaO, MgO, FeO, and SiO₂ at multi-megabar pressures. This could have unexpected consequences for the internal structure and dynamics of exoplanets. In fact, Al₂O₃ in the α -Gd₂S₃-type structure, one of the major structures of $RR'S_3$ compounds, and the U₂S₃type polymorph have very similar enthalpies (see Fig. 2).

ACKNOWLEDGMENTS. We thank Professor W. J. Nellis for valuable comments about shock experiments. Computations were performed at the Minnesota Supercomputing Institute. This work was supported by National Science Foundation Grants EAR-0230319, EAR-0635990, and ITR-0426757 [Virtual Laboratory for Earth and Planetary Materials (VLab)].

- Frost DJ, et al. (2004) Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428:409–412.
- Li J, et al. (2004) Electronic spin state of iron in lower mantle perovskite. Proc Natl Acad Sci USA 101:14027–14030.
- Tateno S, Hirose K, Sata N, Ohishi Y (2005) Phase relations in Mg₃Al₂Si₃O₁₂ to 180 GPa: Effect of Al on post-perovskite phase transition. *Geophys Res Lett* 32: L15306.
- Nishio-Hamane D, Fujino K, Seto Y, Nagai T (2007) Effect of the incorporation of FeAlO₃ into MgSiO₃ perovskite on the post-perovskite transition. *Geophys Res Lett* 34:L12307.

¹The NdYbS₃-type structure was first reported to have the B22₁2 symmetry which is a subgroup of the *Cmrm* group of the CalrO₃-type structure (42, 43). However the NdYbS₃-type structure refined in the B22₁2 symmetry is nearly indistinguishable from the CalrO₃-type structure. The difference between them is very tiny; in the B22₁2 NdYbS₃-type structure, the cation at the B site and one kind of sulfur are just slightly shifted from the 4a and 8f Wyckoff positions in the *Cmrm* CalrO₃-type structure. A recent x-ray diffraction study suggested the NdYbS₃-type structure (44).

- Cynn H, Isaak DG, Cohen RE, Nicol MF, Anderson OL (1990) A high-pressure phase transition of corundum predicted by the potential induced breathing model. *Am Miner* 75:439–442.
- Marton FC, Cohen RE (1994) Prediction of a high-pressure phase transition in Al₂O₃. Am Mineral 79:789–792.
- Thomson KT, Wentzcovitch RM, Bukowinski MST (1996) Polymorphs of alumina predicted by first principles: Putting pressure on the ruby pressure scale. Science 274:1880–1882.
- Funamori N, Jeanloz R (1997) High-pressure transformation of Al₂O₃. Science 278:1109–1111.
- Mashimo T, et al. (2000) High-pressure phase transformation of corundum (α-Al₂O₃) observed under shock compression, Geophys Res Lett 27:2021–2024.
- Lin JF, et al. (2004) Crystal structure of a high-pressure/high-temperature phase of alumina by in situ X-ray diffraction. Nat Mater 3:390–393.
- Caracas R, Cohen RE (2005) Prediction of a new phase transition in Al₂O₃ at high pressures. *Geophys Res Lett* 32:L06303.
- Oganov AR, Ono S (2005) The high-pressure phase of alumina and implications for Earth's D" layer. Proc Natl Acad Sci USA 102:10828–10831.
- Tsuchiya J, Tsuchiya T, Wentzcovitch RM (2005) Transition from the Rh₂O₃(II)-to-CalrO₃ structure and the high-pressure-temperature phase diagram of alumina. *Phys Rev B* 72:020103(R).
- Ono S, Oganov AR, Koyama T, Shimizu H (2006) Stability and compressibility of the high-pressure phases of Al₂O₃ up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle. *Earth Planet Sci Lett* 246:326–335.
- Umemoto K, Wentzcovitch RM, Allen PB (2006) Dissociation of MgSiO₃ in the cores of gas giants and terrestrial exoplanets. *Science* 311:983–986.
- Umemoto K, Wentzcovitch RM, Weidner DJ, Parise JB (2006) NaMgF₃: A low-pressure analog of MgSiO₃. Geophys Res Lett 33:L15304.
- Umemoto K, Wentzcovitch RM (2006) Potential ultrahigh pressure polymorphs of ABX₃-type compounds. *Phys Rev B* 74:224105.
- Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. *Phys Rev B* 23:5048–5079.
- Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. *Phys Rev Lett* 77:3865–3868.
- Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. *Phys. Rev. B* 41:7892–7895(R).
- Wentzcovitch RM (1991) Invariant molecular-dynamics approach to structural phase transitions. Phys Rev B 44:2358–2361.
- Wentzcovitch RM, Martins JL, Price GD (1993) Ab initio molecular dynamics with variable cell shape: Application to MgSiO₃. *Phys Rev Lett* 70:3947–3950.
- Giannozzi P, de Gironcoli S, Pavone P, Baroni S (1991) Ab initio calculation of phonon dispersions in semiconductors. *Phys Rev B* 43:7231–7242.
- Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. *Rev Mod Phys* 73:515–562.
- 30. Wallace D (1972) Thermodynamics of Crystals (Wiley, New York), Chap. 4.

- Baroni S, et al. (2006) Quantum-ESPRESSO. Available at http://www.pwscf.org/. Accessed August 13, 2006.
- Hyde BG, Andersson S, Bakker M, Plug CM, O'Keeffe M (1979) The (twin) composition plane as an extended defect and structure-building entity in crystals. *Prog Solid State Chem* 12:273–327.
- d'Amour H, Schiferl D, Denner W, Schulz H, Holzapfel WB (1978) High-pressure single-crystal structure determinations for ruby up to 90 kbar using an automatic diffractometer. J Appl Phys 48:4411–4416.
- Erskine D (1994) High pressure Hugoniot of sapphire. *High Pressure Science and Technology–1993*, eds Schmidt SC, Shaner JW, Samara GA, Ross M (AIP Press, New York).
- 35. Marsh S, et al. (1980) LASL Shock Hugoniot Data (Univ of California Press, Berkeley), p 260.
- Urtiew PA (1974) Effect of shock loading on transparency of sapphire crystals. J Appl Phys 45:3490–3493.
- Weir ST, Michell AC, Nellis WJ (1996) Electrical resistivity of single-crystal Al₂O₃ shockcompressed in the pressure range 91–220 GPa (0.91–2.20 Mbar). J Appl Phys 80:1522– 1525.
- Mashimo T, et al. (2006) Transition to a virtually incompressible oxide phase at a shock pressure of 120 GPa (1.2 Mbar): Gd₃Ga₅O₁₂. Phys Rev Lett 96:105504.
- 39. Guillot T (2004) Probing the giant planets. Phys Today 57:63-69.
- 40. Rivera EJ, et al. (2005) A ~7.5 M⊕ planet orbiting the nearby star, GJ 876. Astrophys J 634:625–640.
- Valencia D, O'Connell RJ, Sasselov D (2006) Internal structure of massive terrestrial planets. *Icarus* 181:545–554.
- Flahaut J (1979) Sulfides, selenides, and tellurides. Handbook on the Physics and Chemistry of Rare-Earths, eds Gschneidner KA, Jr, Eyring LR (North-Holland, Amsterdam), Vol 4, p 1 and references therein.
- Carré PD, Laruelle P (1974) Crystal structure of neodymium ytterbium sulphide, NdYbS₃ (Translated from French). Acta Crystallogr B 30:952–954.
- Mitchell K, Somers RC, Huang FQ, Ibers JA (2004) Syntheses, structure, and magnetic properties of several LnYbQ₃ chalcogenides, Q=S, Se. J Solid State Chem 177:709–713.
- Rodier PN, Julien R, Tien V (1983) Polymorphism of LaYbS₃—Refinement of the structure of 2 varieties (Translated from French). Acta Crystallogr C 39:670–673.
- Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MqSiO₃. Science 304:855–858.
- Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO₃ perovskite in the earth's lowe mantle. *Earth Planet Sci Lett* 224:241–248.
- Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO₃ in Earth's D" layer. *Nature* 430:445–448.
- El Fadli Z, Lemoine P, Guittard M, Tomas A (1994) Structure of ytterbium sulfide, YbS₂S₃ (Translated from French), (1983) Acta Crystallogr C 50:166–168.
- 50. Wyckoff RWG (1963) Crystal Structures (Interscience Publishers, New York), Vol 2.